INFORMAZIONI DI CARATTERE GENERALE SULLO STIRLING
(fonte Wikipedia)
- Cenni Storici
- Principio di Funzionamento
- La rigenerazione
- Tre diverse configurazioni
- Confronto
- Impianti pressurizzati
- Motore con gassificatore
- Possibili applicazioni
Impianti pressurizzati
La pressurizzazione aumenta semplicemente la massa del gas di lavoro, e quindi il possibile trasferimento di calore, a parità di cilindrata; l'aumento di pressione (con un adeguato aumento di energia termica) è approssimativamente proporzionale all'aumento di energia erogabile.
L’adozione di motori in pressione, presume una perdita dovuta alla compressione passiva di pompaggio del fluido presente nel carter, che obbligatoriamente, in tal caso, deve essere confinato; tale pompaggio, se pure limitato, è minimizzato ed addirittura trasformato in funzionale mediante la adozione di motori pluricilindrici con carter in comune.
L'uso dei vari gas come fluidi di lavoro è determinato da due criteri di notevole importanza.
- Dimensione delle molecole del gas
- Inerzia del gas
Il motore Stirling utilizza una oscillazione ciclica di un gas in ambiente confinato; in tali condizioni appare evidente la necessità di ridurre al massimo il volume del gas di lavoro, (riduzione degli spazi morti) per rendere più incisiva la azione dell'onda di pulsazione. D'altra parte nel volume dove avviene la pulsazione devono verificarsi importanti scambi di calore, con l'esterno e con le superfici di rigenerazione (ricupero del calore); in soluzioni non banali tali scambi sono resi possibili (senza aumentare i volumi), aumentando notevolmente le superfici di scambio, con l'adozione di finissime alettature, metalli porosi, radiatori a tubi sottili.
Pur essendo l'aria e l'azoto ambedue gas a peso molecolare elevato (e quindi ottimi vettori per il calore) la loro notevole dimensione molecolare eleva l'attrito per il flusso del gas in vani molto stretti, tale attrito, con vani di passaggio inferiori a misure dell'ordine del millimetro ad alta velocità, finisce col vanificare le possibilità di trasporto potenziale del calore di tali gas. Per contro l'elio ed ancor più l'idrogeno con dimensione molecolare molto piccola, fluiscono in fori o vani sottilissimi con attriti molto ridotti; il flusso in tali vani permette quindi di elevare moltissimo la superficie di scambio senza aumentare i volumi; lo scambio di calore, così grandemente elevato, può ampiamente compensare il modesto peso molecolare (e contenuto termico) di tali gas. L'adozione di gas diversi dall'aria rende peraltro obbligatorio il confinamento pressurizzato dei gas; il confinamento in pressione aumenta la densità del gas, e quindi anche la loro capacità termica. Per quanto concerne l'elio, la sua inerzia costituzionale lo rende sicuro nel caso di contatto con lubrificanti oleosi, anche l'idrogeno purché sia evitato il contatto con l'aria, essendo riducente, è relativamente inerte con lubrificanti oleosi. Anche l'azoto è inerte. L'aria è ossidante, e ad alta temperatura è comburente.